
ANDI-SERVO

Dual Servo Motor Controller PC/104 Card

 Technical Reference Manual

Rev 2.0 Jan 19, 1999

ANDI-SERVO TECHNICAL REFERENCE MANUAL

1

NOTICE

A. DISCLAIMER

The contents of this manual has been carefully checked and is believed to be
entirely reliable. However, no responsibility is assumed for inaccuracies. Ajeco
reserves the right to make changes to any products described herein to improve
reliability, function or design. Ajeco shall under no circumstances be liable for
incidental or consequential damages or related expenses resulting from use of
products or circuits mentioned herein, even if it has been notified of the possibility of
such damages. Ajeco reserves the right to revise this manual without obligation to
notify any person of such a revision. When this document contains information on a
new product, specifications herein are subject to change without notice.

COPYRIGHT© AJECO OY(INC)
TAKKATIE 7 A, FIN-00370 HELSINKI, FINLAND
Telephone: +358-9-7003-9200, Telefax: +358-9-7003-9209
sales@ajeco.fi www.ajeco.com

B. CAUTION!

C. TRADEMARKS

All trademarks are the property of their respective owners.

1. ALWAYS CHECK voltage levels before connecting any ANDI-SERVO interface
pin to any device or voltage source. DO NOT INTERCONNECT any ANDI-
SERVO interface pins before checking voltage levels and pinouts on connectors.

2. DO NOT SHORT or ground any output.

3. AVOID STATIC ELECTRICITY. The products herein contains devices that might
be damaged by static electricity.

SERIOUS DAMAGE may result to ANDI-SERVO and/or the computer and
WARRANTY will be VOID if these rules are not followed.

ANDI-SERVO TECHNICAL REFERENCE MANUAL

2

Dear Customer,

Thank you for purchasing the ANDI-SERVO Dual Servo Motor Controller board. We
believe the quality, reliability and overall performance of this product will help you
achieve a completely satisfactory dual servo motor controlling system.

Please, fill in, and return the customer support and warranty form. In doing so, we
will be more able to help you in situations requiring technical assistance. Your name
and address will not be used in any other context except for our internal use, i.e.
customer support.

In case you would need technical assistance, although we do not anticipate you will
encounter any problems using the ANDI products, please document the situation
thoroughly and contact Ajeco by telefax or letter. We also greatly appreciate if you
have specific ideas, that might help us improve our products. Please send us your
ideas in writing.

Finally, We wish to thank you once again for your excellent choice of ANDI products.

Sincerely Yours,

AJECO INC (OY)

ANDI-SERVO TECHNICAL REFERENCE MANUAL

3

CUSTOMER SUPPORT AND WARRANTY FORM:

Please fill this form and return it to Ajeco. This information is essential for supporting
you in the future. Use capital block letters.

Name:__

Company:___

Address: ___

City/State/Zip: ___

Phone: ___

Telefax: __

Date of purchase:___

Place of purchase:__

ANDI-SERVO card number:___

Notes:__

Send this form by email or use telefax.

AJECO OY, TAKKATIE 7A, FIN-00370 HELSINKI, FINLAND.
Telefax: +358-9-7003-9209 support@ajeco.fi

ANDI-SERVO TECHNICAL REFERENCE MANUAL

4

TABLE OF CONTENTS

1 General .. 5

1.1 Building a System... 6

2 HARDWARE... 7

2.1 Base Address Selection.. 7

2.2 Interrupt Line Selection... 8

2.3 Motor Connector P3.. 9

2.4 Encoder connector P1 .. 11

2.5 Auxiliary PWM-output connector P2... 12

2.6 Fault LED.. 13

2.7 Technical specifications ... 13

2.8 Board Layout .. 14

2.9 Connector Locations... 15

2.10 Block Diagram .. 16

3 FUNCTIONAL DESCRIPTION ... 17

3.1 General Description.. 17

3.2 Features ... 17

3.3 Theory of Operation.. 18

3.3.1 Introduction... 18

3.3.2 Position feedback interface .. 18

3.3.3 Velocity profile (trajectory) generation .. 19

3.3.4 PID compensation filter... 21

3.4 Typical Applications.. 23

3.4.1 Programming LM629 Host Handshaking (Interrupts) 23

3.4.2 Incremental Encoder Interface.. 23

3.4.3 I/O port usage (I/O map)... 24

4 SOFTWARE FUNCTIONS ... 25

ANDI-SERVO TECHNICAL REFERENCE MANUAL

5

CHAPTER 1

INTRODUCTION

1 General

ANDI-SERVO is a two axis DC-servo motor-controller board for closed loop
positioning applications. The board features a motor-controller processor and
a H-bridge power output stage for each axis.

Controlling and driving a DC-servomechanism is a difficult task. The motor-
controller is required to perform its computing in real-time and the mechanical
system often involves torques and forces of a resonant nature. Mechanical
systems have characteristics familiar to electronics; step response times,
latency, resonance, damping etc. It is the duty of a motor-controller processor
to ensure that the desired motion is performed with optimum result, even
under non-ideal conditions.

The motor-controller processors on ANDI-SERVO can be parametrized for
optimum performance. 32-bit position, velocity and acceleration registers, a
programmable PID-filter with 16-bit coefficients and a programmable
derivative sampling interval are keys to a successful implementation.

ANDI-SERVO can be used in both position- and velocity-mode systems. In
the first mode, The board accelerates the motor to the desired velocity, while
it is constantly monitoring the feedback to see if a desired position is reached.
The board stops the motor movement, smoothly or abruptly, precisely at the
desired position. In the velocity mode, the board maintains a constant velocity
at a motor until the board is instructed to stop.

The ANDI-SERVO is shipped with a comprehensive software library in 'C' with
over 40 functions serving as an interface to the motor-controller processor.

We recommend downloading the National Semiconductor’s application notes
and specifications sheets as they contain valuable information for
programmers and systems integrators. The AN-693 Programming Guide and
AN-706 User Guide can be downloaded from Ajeco’s web site at
www.ajeco.com

ANDI-SERVO TECHNICAL REFERENCE MANUAL

6

1.1 Building a System

The ANDI-SERVO base address must be set before it can be accessed from the
host computer. The board needs 8 continuous I/O addresses, and the demo/test
programs assume that base 300h can be used. Close the base jumpers 0
through 3, leave 4 open to configure the board for base 300h. The interrupt line is
not needed at this stage.

The possibly easiest way to start developing a servo system, is to connect a shaft
encoder and a (small energy) DC-motor to channel 1 of the board. The shaft
encoder can for example be a Bourns ENS1J-B28-L00256, or Hewlett-Packard
HEDS-5700 series. Any "standard" industrial incremental shaft encoders can be
used. Encoders that are equipped with a separate index signal can also be used.
(See sections: Motor Connector P3, Encoder Connector P1).

Apply a Vmotor voltage to the Motor Connector P3. Observe that the PWM-output
H-bridge features an undervoltage lockout (9Vmin...11Vmax) at which the outputs
turn OFF. Select a DC-motor that runs OK with 12...24 Vdc. Provide
correspondingly a sufficient motor voltage (Vmotor) of +12..+24 Vdc.

Run the demo program supplied on the board’s software diskette. The demo
program reads the shaft encoder and writes the result on the computer screen.
The shaft encoder values should change on the screen, when manually rotating
its axis. The DC-motor should also respond accordingly.

When the DC-motor and shaft encoder is properly connected to the board more
precise and thorough software experimenting can begin.

Caution !

A typical pitfall, when building a closed loop positioning system, is that the two
phase signals from the shaft encoder are interchanged. In this case, a "runoff"
situation can occur. For example, the ANDI-SERVO board might drive the motor
to one direction expecting that the encoder readout should decrease. If the
encoders phase signals were interchanged, the encoder readout will increase
instead of decrease, at which case the board will apply more force to the motor,
driving it even further away from the desired position, rendering the motor with
full drive applied.

ANDI-SERVO TECHNICAL REFERENCE MANUAL

7

CHAPTER 2

2 HARDWARE

2.1 Base Address Selection

ANDI-SERVO has five jumpers for selecting the board’s base address. The
jumpers are located close to the PC/104 connector, labeled BASE 0 thorough
BASE 4. The boards base address must be set before it can be accessed from
the host CPU. The board occupies 8 contiguous I/O addresses including the
selected base address. (If base 300h is selected, addresses 300h through 307h
will be occupied by the board.)

The list describes how the jumper selections correspond with the selected base
address. When a jumper is closed (or mounted), it is referred to as a '0'. When a
jumper is removed (dismounted), it is referred to as a '1'. The five jumpers enable
32 different base addresses.

4 3 2 1 0
Base Address

4 3 2 1 0
Base Address

0 0 0 0 0 200h 1 0 0 0 0 300h
0 0 0 0 1 210h 1 0 0 0 1 310h
0 0 0 1 0 220h 1 0 0 1 0 320h
0 0 0 1 1 230h 1 0 0 1 1 330h
0 0 1 0 0 240h 1 0 1 0 0 340h
0 0 1 0 1 250h 1 0 1 0 1 350h
0 0 1 1 0 260h 1 0 1 1 0 360h
0 0 1 1 1 270h 1 0 1 1 1 370h
0 1 0 0 0 280h 1 1 0 0 0 380h
0 1 0 0 1 290h 1 1 0 0 1 390h
0 1 0 1 0 2A0h 1 1 0 1 0 3A0h
0 1 0 1 1 2B0h 1 1 0 1 1 3B0h
0 1 1 0 0 2C0h 1 1 1 0 0 3C0h
0 1 1 0 1 2D0h 1 1 1 0 1 3D0h
0 1 1 1 0 2E0h 1 1 1 1 0 3E0h
0 1 1 1 1 2F0h 1 1 1 1 1 3F0h

Table A. Base Address of Jumpers 4 - 0

ANDI-SERVO TECHNICAL REFERENCE MANUAL

8

2.2 Interrupt Line Selection

ANDI-SERVO can be jumpered to use interrupt lines 2,3,4,5,6 or 7. The interrupt
line is selected by mounting a jumper block at the corresponding pins on the
board. The interrupt selection lines are labeled on the silk screen.

The board can generate interrupts from four sources: Both of the two H-bridge
output stages and both of the motor-controller processors can cause an interrupt.
The interrupt lines are "OR"-ed on the board.

The interrupt source can be determined by reading the interrupt "cause" register
at BASE+6. The H-bridge output stage interrupts are purely diagnostic - the
interrupt is generated at an overheat condition. If the output stage is overheated
(145 °C), it will cause an interrupt. The motor-controller processor is capable of
generating interrupts from a multitude of (programmable) sources.

When read, the BASE+6 register’s bits are decoded as follows:

Bit-0 If '1', Thermal flag interrupt from H-bridge output stage, channel-1
Bit-1 If '1', Thermal flag interrupt from H-bridge output stage, channel-2
Bit-2 If '1', Motor-controller processor at channel-1 interrupts
Bit-3 If '1', Motor-controller processor at channel-2 interrupts

ANDI-SERVO TECHNICAL REFERENCE MANUAL

9

2.3 Motor Connector P3

DC-, and brushless DC-motors can be connected to the ANDI-SERVO motor
connector, labeled with the text P3 on the board’s silk screen. The motor output
method is 8-bit sign/magnitude PWM.

The motor connector is an 8-pin field wiring connector with 5 mm pitch. The pins
are numbered from 1 through 8 having the following use:

Connector P3

Pin-1 Channel 2, PWM-drive output A

Pin-2 Channel 2, Vmotor, +12...50 Vdc input

Pin-3 Channel 2, GND (not isolated from computer, see Caution !)

Pin-4 Channel 2, PWM-drive output B

Pin-5 Channel 1, PWM-drive output A

Pin-6 Channel 1, Vmotor, +12...50 Vdc input

Pin-7 Channel 1, GND (not isolated from computer, see Caution !)

Pin-8 Channel 1, PWM-drive output B

Table 2. Connector P3

Caution !

Pay attention to potentially high motor voltages ! The absolute maximum voltage
for the PWM-stage is 55 Vdc. Exceeding this level can lead to damage to the
computer system and the ANDI-SERVO card. Carefully check the pinout and
voltages before connecting to the board.

Pay attention that ANDI-SERVO is not isolated from the computer system. The
terminals marked with: GND, MUST be connected from the P3-connector to the
system’s power supply ground, by own wires. This ensures that the motor
ground currents will be properly conducted to the system ground by NOT going
through the PC/104 stack !

The terminals marked with PWM-drive output A (and B) should be connected to
the DC-motor’s positive and negative terminals. Ensure that the DC-motor
power terminals are not connected to system ground. (Use a DC-motor which
has a direction of rotation that can be reversed by changing the polarity at its
terminals).

ANDI-SERVO TECHNICAL REFERENCE MANUAL

10

Warning !

Never connect an oscilloscope directly over the PWM-drive output A and B
terminals. The probe-ground can accidentally short the PWM-output. A proper
way of measuring at the PWM-outputs, is to use two probes, both grounded to
GND. Measure with one probe at output A and one at output B. The PWM-
output stage is a H-bridge. The output A will be pulled to Vmotor and output B
pulled to ground or vice versa, depending on the drive direction.

ANDI-SERVO TECHNICAL REFERENCE MANUAL

11

2.4 Encoder connector P1

Industry standard incremental shaft encoders may be used with ANDI-SERVO for
positioning feedback. ANDI-SERVO has also support for encoders with index
pulse. Examples of encoders are Bourns ENS1J-B28-L00xxx and Hewlett-
Packard HEDS-5700 series.

The minimum encoder pulse width (high or low) is 2 uS. The dwell time (phase-A
low from phase-B high, or phase-B high from phase-A low) minimum is 1 uS. The
maximum encoder capture rate is 1 MHz.

Connector P1 Pinout:

Pin-1 GND (Not isolated from computer)

Pin-2 Phase-B, channel 2

Pin-3 Phase-A, channel 2

Pin-4 Index, channel 2

Pin-5 Phase-B, channel 1

Pin-6 Phase-A, channel 1

Pin-7 Index, channel 1

Pin-8 Vcc output (system +5 Vdc)

Table 3. Connector P1 Pinout

Note !

The lines 2, 3, 4, 5, 6 and 7 are pulled up to system +5Vdc with 1 kOhm. The
encoder must be capable of sinking 5 mA.

Warning !

Use only encoders with "Open Collector" type of output. Encoder Vin-max =
System Vcc.

ANDI-SERVO TECHNICAL REFERENCE MANUAL

12

2.5 Auxiliary PWM-output connector P2

If the motor driver circuitry on the ANDI-SERVO is not capable of sourcing
enough current to the motor, it is possible to utilize the motor-controller processor
part of the board and connect an external, and more powerful H-bridge to the P2
connector. This connector outputs 8-bit sign/magnitude PWM of TTL-level.

PWM-output connector P2:

Pin-1 GND (not isolated from system)

Pin-2 Thermal flag input, channel 1

Pin-3 Thermal flag input, channel 2

Pin-4 Brake output, channel 2

Pin-5 Brake output, channel 1

Pin-6 Direction output, channel 2

Pin-7 PWM-output, channel 2

Pin-8 Direction output, channel 1

Pin-9 PWM-output, channel 1

Pin-10 GND (not isolated from system)

Table 4. PWM-output connector P2

Caution !

All signals are TTL-level.

Warning !

The thermal flag inputs are pulled to Vcc (system +5Vdc) by 1 kOhm. An "open
collector" type of device capable of sinking 5 mA is the only allowed type of
signal source.

ANDI-SERVO TECHNICAL REFERENCE MANUAL

13

2.6 Fault LED

The fault LED on the ANDI-SERVO serves many purposes. It can act as an visual
alarm signal or as a diagnostic tool. The LED will light up upon a thermal overheat
condition, interrupt or a software call to the function s_fault_led();

2.7 Technical specifications

Size: 91 x 96 mm (3.6" x 3.8"), PC/104
Operating temp. range: 0..70°C
Weight: 80 grams

Position range: -1,073,741,824 to +1,073,741,823 counts
Velocity range: 0 to 16,383 counts/sample, with a

resolution of 1/65536 counts/sample

Acceleration range: 0 to 16,383 counts/sample/sample, with a
resolution of 1/65536
counts/sample/sample.

Operating modes: Position and Velocity
Control algorithm: PID plus programmable integration limit
Max. encoder state capture rate: 1 MHz (encoder signals must remain stable

for 1 µS.)

PID Sample intervals: Derivative term: Programmable from 256
µS to 65,536 µS, in steps of 256 µS/step.
Proportional and integral term: 256 µS.

PWM-output stage: 0.5 A @ 24 Vdc

Absolute maximum ratings: Max. Vmotor 55 Vdc, Max. 3 A peak

Thermal shutdown: @175° C
Thermal warning interrupt: @145° C
Undervoltage lockout: 9 Vmin, 11 Vmax

Encoder wire thickness: 0.08..0.5mm2

ANDI-SERVO TECHNICAL REFERENCE MANUAL

14

2.8 Board Layout

 1 P 1

1

 P3
 P2

 ANDI-SERVO 1

 8

 FAULT

 LED 43210 765432

 BASE IRQ

 Figure 1. ANDI-SERVO Board Layout

ANDI-SERVO TECHNICAL REFERENCE MANUAL

15

2.9 Connector Locations

 Figure 2. ANDI-SERVO connector locations

ANDI-SERVO TECHNICAL REFERENCE MANUAL

16

2.10 Block Diagram

Figure 3. Block Diagram of ANDI-SERVO v1.1

ANDI-SERVO TECHNICAL REFERENCE MANUAL

17

CHAPTER 3

3 FUNCTIONAL DESCRIPTION
LM629 PRECISION MOTION CONTROLLER

3.1 General Description

The LM629 is a dedicated motion-control processor designed for use with a
variety of DC and brushless DC servo motors, and other servomechanisms
which provide a quadrature incremental position feedback signal. The part
perform the intensive, real-time computational tasks required for high
performance digital motion control. The host control software interface is
facilitated by a high-level command set in the ANDI-SERVO library.

3.2 Features

• 32-bit position, velocity, and acceleration registers
• Programmable digital PID filter with 16-bit coefficients
• Programmable derivative sampling interval
• Internal trapezoidal velocity profile generator
• Velocity, target position, and filter parameters may be changed
 during motion
• Position and velocity modes of operation
• Real-time programmable host interrupts
• Quadrature incremental encoder interface with index pulse input

ANDI-SERVO TECHNICAL REFERENCE MANUAL

18

3.3 Theory of Operation

3.3.1 Introduction

The typical system block diagram (See Figure 3, ANDI-SERVO Block Diagram)
illustrates a servo system built using the LM629. The host processor
communicates with the LM629 through an I/O port to facilitate programming a
trapezoidal velocity profile on a digital compensation filter. The PWM output
interfaces to an external PWM Hbridge that produces the signal that drives the
motor. An incremental encoder provides feedback for closing the position servo
loop. The trapezoidal velocity profile generator calculates the required
trajectory for either position or velocity mode of operation. In operation, the
LM629 subtracts the actual position (feedback position) from the desired
position (profile generator position), and the resulting position error is
processed by the digital filter to drive the motor to the desired position. Table I
provides a brief summary of specifications offered by the LM629:

3.3.2 Position feedback interface

The LM629 interfaces to a motor via an incremental encoder. Three inputs are
provided: two quadrature signal inputs, and an index pulse input. The
quadrature signals are used to keep track of the absolute position of the motor.
Each time a logic transition occurs at one of the quadrature inputs, the LM629
internal position register is incremented or decremented accordingly. This
provides four times the resolution over the number of lines provided by the
encoder. Each of the encoder signal inputs is synchronized with the LM629
clock.

The optional index pulse output provided by some encoders assumes the logic-
low state once per revolution. If the LM629 is so programmed by the user, it will
record the absolute motor position in a dedicated register (the index register) at
the time when all three encoder inputs are logic low.

If the encoder does not provide an index output, the LM629 index input can
also be used to record the home position of the motor. In this case, typically,
the motor will close a switch which is arranged to cause a logic-low level at the
index input, and the LM629 will record motor position in the index register and
alert (interrupt) the host processor. Permanently grounding the index input will
cause the LM629 to malfunction.

ANDI-SERVO TECHNICAL REFERENCE MANUAL

19

3.3.3 Velocity profile (trajectory) generation

The trapezoidal velocity profile generator computes the desired position of the
motor versus time. In the position mode of operation, the host processor
specifies acceleration, maximum velocity, and final position. The LM629 uses
this information to affect the move by accelerating as specified until the
maximum velocity is reached or until deceleration must begin to stop at the
specified final position. The deceleration rate is equal to the acceleration rate.
At any time during the move the maximum velocity and/or the target position
may be changed, and the motor will accelerate or decelerate accordingly.

When operating in the velocity mode, the motor accelerates to the specified
velocity at the specified acceleration rate and maintains the specified velocity
until commanded to stop. The velocity is maintained by advancing the desired
position at a constant rate. If there are disturbances to the motion during
velocity mode operation, the long-time average velocity remains constant. If the
motor is unable to maintain the specified velocity (which could be caused by a
locker rotor, for example), the desired position will continue to be increased,
resulting an a very large position error. If this condition goes undetected, and
the impeding force on the motor is subsequently released, the motor could
reach a very high velocity in order to catch up to the desired position (which is
still advancing as specified).

All trajectory parameters are 32-bit values. Position is a signed quantity.
Acceleration and velocity are specified as 16-bit, positive-only integers having
16-bit fractions. The integer portion of velocity specifies how many counts
provide increased average velocity resolution. Acceleration is treated in the
same manner. With each sampling interval the commanded acceleration value
is added to the current desired velocity (unless the command velocity has been
reached).

ANDI-SERVO TECHNICAL REFERENCE MANUAL

20

One determines the trajectory parameters for a desired move as follows. If, for
example, one has a 500-line shaft encoder, desired that the motor accelerates
at one revolution per second until it is moving at 600 rpm, and then decelerate
to a stop at a position exactly 100 revolutions from the start, one would
calculate the trajectory parameters as follows:

let P = target position (units = encoder counts)
let R = encoder lines * 4 (system resolution)
then R = 500 * 4 = 2000
and P = 2000 * desired number of revolutions
 P = 2000 * 100 revs = 200,000 counts
 (value to load)
 P (coding) = 00030D40 (hex code written to LM629)

let V = velocity (units = counts/sample)
let T = sample time (seconds) = 341 s

 (with 6 MHz clock)
let C = conversion factor = 1 minute/60 seconds
then V = R * T * C * desired rpm
and V = 2000* 341E-6 * 1/60 * 600 rpm
 V = 6.82 counts /sample
 V (scaled) = 6.82 * 65,536 = 446,955.52
 V (rounded) = 446,956 (value to load)
 V (coding) = 0006D1EC (hex written to LM629)

let A = acceleration (units = counts/sample/sample)
 A = R * T * T * desired acceleration (rev/sec/sec)
then A = 2000 * 341E-6 * 341E-6 * 1 rev/sec/sec
and A = 2.33E-4 counts/sample/sample
 A (scaled) = 2.33E-4 * 65,536 = 15.24
 A (rounded) = 15 (value to load)
 A (coding) = 0000000F (hex code written to LM629)

The above position, velocity, and acceleration values must be converted to
binary codes to be loaded into the LM629. The values shown for velocity and
acceleration must be multiplied by 65,536 (as shown) to adjust for the required
integer/fraction format of the input data. Note that after scaling the velocity and
acceleration values, literal fractional data cannot be loaded; the data must be
rounded and converted to binary. The factor of four increases in system
resolution is due to the method used to decode the quadrature encoder signals.

ANDI-SERVO TECHNICAL REFERENCE MANUAL

21

3.3.4 PID compensation filter

The LM629 uses a digital Proportional Integral Derivative (PID) filter to
compensate for the control loop. The motor is held at the desired position by
applying a restoring force to the motor that is proportional to the position error,
plus the integral of the error, plus the derivative of the error. The following
discrete-time equation illustrates the control performed by the LM629:

 n

u(n) = kp*e(n) + ki Σ e(n) +

 N=0

 kd[e(n’) - e(n’ - 1)]

where u(n) is the motor control signal output at sample time
 n, e(n) is the position error at sample time n, n’ indi-
 cates sampling at the derivative sampling rate, and
 kp, ki and kd are the discrete-time filter parameters
 loaded by the users.

The first term, the proportional term, provides a restoring force proportional to
the position error, just as does a spring obeying Hooke’s law. The second term,
the integration term, provides a restoring force that grows with time, and thus
ensures that the static position error is zero. If there is a constant torque
loading, the motor will still be able to achieve zero position error.

The third term, the derivative term, provides a force proportional to the rate of
change of position error. It acts just like viscous damping in a damped spring
and mass system (like a shock absorber in a automobile). The sampling
interval associated with the derivative term is user-selectable; this capability
enables the LM629 to control a wide range of inertial loads (system mechanical
time constants) by providing a better approximation of the continuous
derivative. In general, longer sampling intervals are useful for low-velocity
operations.

ANDI-SERVO TECHNICAL REFERENCE MANUAL

22

(PID compensation filter....)

In operation, the filter algorithm receives a 16-bit error signal from the loop
summing-junction. The error signal is saturated at 16 bits to ensure predictable
behavior. In addition to being multiplied by filter coefficient kp, the error signal
is added to an accumulation of previous errors (to form the internal signal) and,
at a rate determined by the chosen derivative sampling interval, the previous
error is subtracted from it (to form the derivative signal). All filter multiplications
are 16-bit operations; only the bottom 16 bits of the product are used.

The integral signal is maintained to 24 bits, but only the top 16 bits are used.
the scaling techniques results in a more usable (less sensitive) range of
coefficient ki values. The 16 bits are right-shifted eight positions and multiplied
by filter coefficient ki to form the term which contributes to the motor control
output. The absolute magnitude of this product is compared to coefficient il,
and the lesser, appropriately signed magnitude then contributes to the motor
control signal.

The derivative signal is multiplied by coefficient kd each derivative sampling
interval. This product contributes to the motor control output every sample
interval, independent of the user-chosen derivative sampling interval.

The kp, limited ki, and kd product terms are summed to form a 16-bit quantity.
Depending on the output mode (wordsize), either the top 8 or top 12 bits
become the motor control output signal.

ANDI-SERVO TECHNICAL REFERENCE MANUAL

23

3.4 Typical Applications

3.4.1 Programming LM629 Host Handshaking (Interrupts)

A few words regarding the LM629 host handshaking will be helpful to the
system programmer. As indicated in various portions of the above text, the
LM629 handshakes with the host computer in two ways: via the host interrupt
output (Pin 17), or via polling the status byte for “interrupt“ conditions. When
the hardwired interrupt is used, the status byte is also read and parsed to
determine which of six possible conditions caused the interrupt.

When using the hardwired interrupt it is very important that the host interrupt
service routine does not interfere with a command sequence which might have
been in progress when the interrupt occurred. If the host interrupt service
routine were to issue a command to the LM629 while it is in the middle of an
ongoing command sequence, the ongoing command will be aborted (which
could be detrimental to the application).

Two approaches exist for avoiding this problem. If one is using hardwired
interrupts, they should be disabled at the host prior to issuing any LM629
command sequence, and re-enabled after each command sequence. The
second approach is to avoid hardwired interrupts and poll the LM629 status
byte for “interrupt“ status. The status byte always reflects the interrupt-condition
status, independent of whether or not the interrupts have been masked.

3.4.2 Incremental Encoder Interface

The incremental (position feedback) encoder interface consists of three lines:
Phase A, Phase B, and Index. The index pulse output is not available on
some encoders. The LM629 will work with both encoder types.

ANDI-SERVO TECHNICAL REFERENCE MANUAL

24

3.4.3 I/O port usage (I/O map)

ANDI-SERVO occupies 8 contiguous I/O addresses, base+0 through base+7.
The I/O port usage is as follows:

PORT
ADDRESS

FUNCTION AT
READ

FUNCTION AT
WRITE

NOTES

base+0 Status byte Command byte from/to
LM629,
channel 1

base+1 Data byte Data byte -"-

base+2 Status byte Command byte from/to
LM629,
channel 2

base+3 Data byte Data byte -"-

base+4 No op PWM-Brakes bit-1=chan2,
bit-0=chan1

base+5 No op Hardware Reset bit-1=chan2,
bit-0=chan1

base+6 IRQ-cause Ena/Dis IRQ, LED See notes *)

base+7 Clear IRQ No op See notes **)

*) When written to: This register is used for hardware enabling/disabling the
interrupts and controlling the FAULT LED. If bit-1 is set to '1' , interrupts are
enabled, otherwise disabled. If bit-0 is set to '1', the LED will be ON, otherwise
OFF.

When read: This register’s lowest four bytes indicate the source of the interrupt.
The register can also be occasionally polled, to check for an overheat condition,
for example. The register decodes as follows:

Bit-3 = '1' = Interrupt from LM629, channel 2
Bit-2 = '1' = Interrupt from LM629, channel 1
Bit-1 = '1' = Thermal overheat interrupt from channel 2
Bit-0 = '1' = Thermal overheat interrupt from channel 1

**) The interrupt is held high until the Clear-IRQ register is read. This register does
not return a value, it clears the interrupt condition.

ANDI-SERVO TECHNICAL REFERENCE MANUAL

25

4 SOFTWARE FUNCTIONS

Please refer to the attached software diskette for the latest library and example
code. The functions herein are listed only to give a quick perception on what’s
included in the library code.

s_check_busy(int chip)
s_clr_irq(int chip, int mask)
 s_disable_irq(void)
s_enable_irq(void)
s_fault_led(int mode)
s_get_base(void)
 s_get_bp_abs(int chip, long *bp)
s_get_bp_rel(int chip, long *bp)
s_get_brake(int chip, int *mode)
 s_get_desiredpos(int chip, long *pos)
s_get_desiredvel(int chip, long *vel)
s_get_errcode(void)
s_get_indexpos(int chip, long *pos)
s_get_integrsum(int chip, int *sum)
s_get_irqmask(int chip, int *mask)
s_get_poserr(int chip, int *trsh)
s_get_realpos(int chip, long *pos)
s_get_realvel(int chip, long *vel)
s_get_signals(int chip, uint *s)
s_get_status(int chip, int *stat)
s_get_stoperr(int chip, int *trsh)
s_init(int chip)
s_pgm_filter(int chip, S_FILTERfl)
s_pgm_trajectory(int chip, S_TRY tr)
s_reset(int chip, int mode)
s_set base(int base)
s_set_absacc(int chip, long acc)
s_set_abspos(int chip, long pos)
s_set_absvel(int chip, long vel)
s_set_bp_abs(int chip, long bp)
s_set_bp_rel(int chip, long bp)
s_set_brake(int chip,int mode)
s_set_homepos(int chip)
s_set_indexpos(int chip)
s_set_irqmask(int chip, int mask)
s_set_poserr(int chip, int trsh)
s_set_stoperr(int chip, int trsh)
s_soft_reset(int chip)
s_start(int chip)
s_stop(int chip, int mode)
s_update_filter(int chip)

* end of document *

